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Abstract-There have been many attempts in the literature to develop analogies for momentum, heat and 
mass transfer to power-law fluids. However, none consider the presence of a pressure gradient when 
formulating the analogies. The present work attempts to develop a momentum/heat transfer analogy under 
the influence of a mild pressure gradient for non-Newtonian power-law fluids using the Nakayama et al. 

(AIL4 J. 22,841L844 (1984)) solution methodology for Newtonian fluids. 

INTRODUCTION 

IT IS WELL-known that the heat transfer rate can be 
reasonably well estimated without actually solving the 
energy equation through the use of momentum/heat 
transfer analogies. For Newtonian fluids, the number 
of alternative approaches for establishing the momen- 
tum and heat transfer during turbulent flow have been 
discussed by Nakayama et al. [l] and they have them- 
selves derived the momentum and heat transfer anal- 
ogy for external turbulent boundary layer flow under 
the influence of mild pressure gradients. 

In the case of non-Newtonian power-law fluids, 
there have been attempts to establish momentum/heat 
transfer analogies by Metzner and Friend [2], Skel- 
land [3], Petersen and Christiansen [4], Krantz and 
Wasan [5], Sandal1 et al. [6], Smith and Edwards [7], 
Kawase and Ulbrecht [8], Irvine and Karni [9] and 
Wangskarn and Ghorashi [lo]. 

Skelland [3] and Irvine and Karni [9] have provided 
heat transfer analogies by using a Blasius type 
relationship between friction factor and Reynolds 
number for the external turbulent flow past the flat 

plate whereas the rest have analyzed the internal flow 
through smooth circular pipes. Metzner and Friend 
[2] calculated the Stanton number as a function of the 
friction factor and Prandtl number, applying Rie- 

chardt’s general formulation for the analogy between 
heat and momentum transfer in turbulent pipe flow. 
Their correlation gave fairly good predictions for 
purely viscous non-Newtonian fluids. Petersen and 
Christiansen [4] extended the Metzner-Friend cor- 
relation to non-isothermal and transitional flow and 
claimed an improvement in the heat transfer pre- 
diction by the use of a modified Prandtl number. 
Krantz and Wasan [5] presented a correlation for heat, 
mass and momentum transfer in the fully developed 
turbulent flow of power-law fluids in circular tubes 
which has the same form as the Metzner-Friend cor- 

relation but differs from it in terms of the use of the 
continuous eddy viscosity distribution. Sandal1 et al. 

[6] reprocessed the data generated by Raniere [ll], 
Haines [12], Friend [I 31 and Farmer [14] and came 
up with a new correlation for Stanton number. Smith 
and Edwards [7] extended the eddy viscosity 
expression for Newtonian pipe flow to non-New- 
tonian flow by using the apparent viscosity at the wall. 
Kawase and Ulbrecht [8] proposed a new theoretical 
expression using Levich’s three-zone model for pre- 
dicting turbulent heat and mass transport in inelastic 
non-Newtonian liquids. Wangskarn and Ghorashi 
[lo] proposed a model for heat transfer to non- 
Newtonian power-law fluids flowing through heated 
horizontal pipes which was shown by them to be 
applicable to a wide range of flow behavior index. 

Though there are a number of correlations available 
as stated above, none of them have considered the 
presence of pressure gradients during the turbulent 
boundary layer flow. In the present paper, the Naka- 
yama et al. [l] solution method for Newtonian fluids 
is extended to non-Newtonian power-law fluids in 
order to establish the momentum/heat transfer anal- 
ogy in the presence of mild pressure gradients. 

ANALYSIS 

The total shear stress at any point in a turbulent 
fluid consists of a viscous shear component and a 
turbulent shear component given as 

r=r V,SCDUS + Zturbulent. (1) 

For non-Newtonian inelastic fluids, it is assumed 
that the flow behavior is well described by the power- 
law model and hence the total shearing stress can be 
written in line with the well-known Prandtl mixing 
length theory used earlier by Clapp [ 151 as follows : 
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NOMENCLATURE 

A coefficient in equation (7) and defined by St, Stanton number defined by equation 
equation (8a) (14c) 

B coefficient in equation (7) and defined by T temperature 
equation (8b) Th temperature of the bulk of the fluid 

c coefficient in equation (7) and defined by T, temperature at the edge of the boundary 
equation (8~) layer 

G local skin friction coefficient defined by TW temperature at the wall 
equation (14b) u streamwise velocity component 

c, specific heat per unit mass u, velocity at the edge of the boundary layer 

.r” 

pipe diameter 
;: 

maximum velocity in pipe flow 
fanning friction factor defined in dimensionless velocity defined by 
equation (18) equation (8d) 

I function defined in equation (23b) V average velocity in pipe flow 
k thermal conductivity of the fluid +x, Y boundary layer coordinates 
K consistency index of the power-law fluid Y, distance from the wall defined by 
in coefficient in the summation series given equation (9b) 

by equation (5a) Yf dimensionless distance defined by 
m function defined by equation (24~) equation (8e). 
n pseudoplasticity index of the power-law 

fluid 

P pressure in equation (10a) Greek symbols 
P ‘P-function’ defined by equation (13b) a,P dimensionless functions of n appearing 

Pr, Prandlt number for Newtonian fluid in in equation (17a) 
equation (13b) PI pressure gradient function defined by 

Pr, Prandlt number evaluated using viscosity equation (5b) 
of fluid at wall shearing stress and YI function of n defined by equation (20) 
defined by equation (13~) 6 viscous (velocity) boundary layer 

Pr, Prandtl number for power-law fluids in thickness 

external flows and defined by equation 6, thermal boundary layer thickness 

(27a) Ic proportionality constant between mixing 

4 heat flux in equation (1 Ob) length and distance y defined in 

4W heat flux at the wall equation (9a) 

Re Reynolds number for power-law fluids in Jo viscosity of the fluid 
pipe flow in equation (17) and defined P density of the fluid 

as p Vzmn8/;), T total shear stress defined in equation (I) 

Re, Reynolds number for power-law fluids in r, wall shear stress 

external flows and defined by equation 7,,ilcoua viscous shear component defined in 

(23~) equation (2) 

SP drag coefficient in equation (13a) rturbulent turbulent shear component defined 

St Stanton number defined by equation in equation (2) 

(30a) n coefficient defined in equation (19). 

du I I It is now assumed that the turbulent shear domi- 
z=K- 

dy 
(2) nates the flow situation and that the viscous shear can 

be neglected in comparison to its magnitude when 
where u and z are the mean velocity in the streamwise describing the total shear. Thus, we have 
direction x and the local shear stress at the normal 
distance y away from the wall. K is the consistency 
index and n the power-law index describing the rheo- 

(3) 

logical behavior of the fluid. The density is denoted 
as p and the proportionality constant between mixing The shear stress near the wall is usually known to vary 

length and distance y is denoted as K. For Newtonian as follows : 
fluids, IC is the von Karman constant and for power- 
law fluids this would be derived later from the known dr 

r=r,+ ~ 
velocity profile for power-law fluids. 0 dY w 

y (4) 
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where the subscript w refers to the wall. Equations (3) 

and (4) can be combined to give 

du (t/p) “* (7wiP) ‘I2 
-= 

dy JV 
~ = [~+b,w~1”‘lc?; 

where 

p, =; ;; 0 w 
(5b) 

o;,‘)= 1/2(1/2-1)(1/2-2)“~(1/2-m+l)/m! (5c) 

where 6 is the viscous (velocity) boundary layer thick- 
ness. The stress gradient is assumed to be mild enough 
such that ]/3,Y/S] < 1. Equation (5a) may be readily 
integrated to yield 

&= 
Power-law fluid velocity profiles in turbulent pipe- 
flow have been discussed in detail in ref. [16]. An 
expression for the velocity profile in ref. [ 171 is adapted 
to the boundary layer flow situation under con- 
sideration to give the following : 

u+ = A lnY+“‘“‘+(AC+B) (7) 

where 

A = 2.46n0.25 

B = -0.4&n’,* 

(8a) 

(8b) 

C = (0.1944-0.1313/n+0.3876/n2-0.0109/n’) 

x exp ( -4.961n2) + 1.3676/n+ln 2(*+“)‘*’ (8~) 

u+ = u/(7,/p) ‘I2 (W 

y+ = y”(z,/p)‘*~“‘~*p/K. (W 

The comparison of equation (6) with equation (7) for 
b, = 0 implies that 

K = l/A = 0.4065/n”*’ @a) 

YX7W/P) (2m”)i2p/K = exp [ --n(AC+ B)/A]. (9b) 

Expression (9b) is evaluated for different values of n 
as given in Table I. It can be seen that the value of 

Table I P = 9.24(PrA’4 - 1). 

n G( B exp[--n(AC+B)/A] 

1.0 0.0790 0.250 0.1130 
0.9 0.0770 0.255 0.1177 
0.8 0.0760 0.263 0.1219 
0.7 0.0752 0.270 0.1249 
0.6 0.0740 0.281 0.1249 
0.5 0.0723 0.290 0.1198 
0.4 0.0710 0.307 0.1070 
0.3 0.0683 0.325 0.0844 
0.2 0.0646 0.349 0.0526 

0.113 for n = 1 is close to the approximate value of 

0.1 obtained by Nakayama et al. [l] for Newtonian 
fluids. 

Since the advection terms become small near the 

wall, the momentum and energy equations reduce to 

dz dp _=~ 
dy dx 

dq -=o 
dy (lob) 

where the pressure and heat flux are denoted by p and 
q. Equations (10) imply that the temperature profile 
near the wall may become fairly insensitive to the 
pressure gradient, while the velocity profile there must 
correspond to the pressure gradient according to 
equations (lOa) and (5b) 

(11) 

The preceding observation on the energy equation 
indicates that the temperature law of the wall for zero 
pressure gradient given below may well be valid even 
for the case of mild pressure gradients 

Pc,(~~P)“2(~,.-7) = AIn(y/y,)+P (12) 

where T and C, are the temperature and specific heat, 
respectively, and P the Jayatillaka [18] ‘P-function’ 
that accounts for the enhanced resistance to heat 
transfer offered by the viscous sublayer as a function 
of laminar Prandtl number Pr. For Newtonian fluids, 
Jayatillaka [18] assumed a velocity profile of a form 
similar to equation (7) and derived an expression 
relating the extra resistance function o,,P, the drag 
coefficient sp and the Stanton number St as follows : 

~oP=~-~(l+l.25A’%) (1W 

where o,, is the total Prandtl number in the fully tur- 
bulent region of the fluid, P the ‘P-function’, and the 
drag coefficient sp is defined as r,/pV* with V being 
the average velocity. Using a large amount of exper- 
imental values from the literature on Newtonian 
fluids, Jayatillaka [18] drew out the following simple 
form for the P-function which predicted the extra 
resistance to heat transfer rather accurately : 

(J3b) 

For power-law fluids, the same procedure could be 
followed for the derivation of the ‘P-function’ as Jay- 

atillaka [ 181. In fact, using equation (7) an expression 
identical to equation (13a) can be easily obtained. 
However, in order to get an expression like equation 
(13b), a lot of accurate flow and heat transfer data on 
power-law fluids is required. There is certainly no 
dearth of such heat transfer data in the literature. 
Nevertheless, as a first approximation, it is assumed 
that equation (13b) holds for power-law fluids when 
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the Prandtl number is defined appropriately in the in Table 1. Re is the generalized Reynolds number 
form of Pr, as follows : defined as follows : 

pr = !k&c \* k (13c) (17b) 

where p,+ is the viscosity of the fluid evaluated at Following the procedure of Skelland [20], a suitable 
wall shearing stress. This definition of Prandtl number expression for the local surface shear stress can be 
follows the one presented by Metzner and Friend [2]. obtained from equation (l7a) as follows : 

In equations (12) and (13b), the turbulent Prandtl 
number is assumed to be unity. After evaluating equa- 

cr, = 2r,/puf = 20(l), /puf_“fi”)” (18) 

tions (6) and (12) at the viscous (I‘ = 6) and the where 
thermal (J = 6,) boundary layer edges, respectively, 
the subtraction of equation (12) from equation (6) 

Q = c((0,817)?-““~“‘/2”“+ 1 (19) 

leaves the following : and 

2 (---I ‘,Z (C/2) ‘,‘J y, = 8”- ‘K[(3n+ 1)/4n]“. (20) 
G, 

- ____ = A In (a/S,) - P 
St, 

Note that for the Newtonian case: n = 1, x = 0.791, 
b = 0.25, R = 0.02332 

(l4a) 
C-. = 1, O.O4664(p/pu e 6) ‘I“. (21) 

where the skin friction coefficient is 

c,, = 2rw/pu: (14b) 

and the Stanton number 

St, = q,lpC,u,(Tw - Tel. (14c) 

Subscript e refers to the corresponding boundary- 
layer edge y = 6 or 6,. Due to equation (9b), (yJ6) 
in the last term of the right-hand side of equation 
(14a) may be dropped. Moreover, the logarithmic 
term in equation (14a) can be neglected since 
In (S/S,) - 0 for Pr, - 1 and In (S/S,) << P/A for 
Pr, >> 1. Thus, equation (l4a) reduces to the fol- 
lowing compact form for the momentum/heat transfer 

analogy of present concern : 

Equation (18) corresponds to the following velocity 
model for power-law fluids : 

qu, = (y/~)““![?-“‘2~““, (22) 

Upon substitution of equations (18) and (22) equa- 
tion (16) can be easily solved for 6 to give 

2Q[2-8(2-3n)][l -/I(1 -n)][l +jn] 

BG-/w--n)1 

(234 

where 

RESULTS AND DISCUSSION Re, = ,wm”,f/y,. (23~) 

A simple integral approach is now followed in order 
to get estimates of Cry and /I, so that the validity of 

The substitution of equation (23a) into equations 

equation (15) may be substantiated. A usual control 
(18) and (11) yields 

volume analysis leads to the momentum balance C,-, Rep” 1 +b) = r 
relation given below : 2Q 

(n.~--~‘)dy+~ :‘(u+)dg=;. 
s 

2R[2-/?(2-3n)][l -B(l -n)][l +/+r] p”!(‘+B’71 
(16) BnL-8(2-n)l 1 

For power-law fluids, Dodge and Metzner [19] have X ~lrni( 1 t/h) 
provided a Blasius-type of approximate equation for 

(24a) 

the friction factor in terms of the generalized Reynolds and 
number relationship given as 

,f=$ 5x10’<Re<105 1 ..I 

(17a) 

where c( and /I are functions of n for the case of power- 
G=) 

law fluids, and their values for varying n are presented where 
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_ dln u, 
m- 

dln x ’ (24~) 

For the special case of ti being constant we have 

wedge flow for which 

u, cc x” (25a) 

(25b) 

The analogy factor on the basis of equation (15) for 
the case of the flat plate, i.e. fi = 0 can be written as 
follows : 

St, = 
cr., 12 

I+ (CrJ2) “2[9.24(Pr;‘4 - l)] (26) 

Using equation (24a) for the values of Cr,, the 
above equation (26) is plotted in Fig. 1 for selected 
values of n (1.0, 0.8, 0.6, 0.4) and a typical chosen 
Reynolds number of 105. At n = 1, the curve obtained 
is no different from that of Nakayama et al. [l] who 

compared it with existing analogies and found good 
agreement. For values of n deviating from unity, a 
comparison of the results plotted in Fig. 1 would be 
desirable. There are two equations in the literature for 
the turbulent boundary layer flow past a flat plate- 
one given by Skelland [3] and the other suggested 
by Irvine and Karni [9]. However, before making a 
comparison the relevant equations have to be modi- 
fied to conform with the present definition of the 
various terms appearing in equation (26). Skelland [3] 
as well as Irvine and Karni [9] have used a different 
form of Prandtl number. This is first converted to the 
following generalized Prandtl number defined as 

(274 

EXTERNAL FLOW : FLAT PLATE 

Re, = 105 

102 

Pr, 

103 

FIG. 1. Stanton number vs Prandtl number for external flow 
ofpower-law fluids past a flat plate for 8, = 0 and Rex = 10’. 

Metzner and Friend [2] have provided a relation- 
ship between the two Prandtl numbers of the form 
defined in equations (13~) and (27a). Their relationship 

which is valid for pipe flow can be easily adapted to 
the external to give 

[8+ “‘“(3n+ 1)/4n]. (27b) 

Using equations (27a) and (27b) and other terms 
conforming to the definitions used in the present 
analysis, the following modified forms are written : 

Skelland’s [3] equation 

x [B”‘(~~Re~]~2’3”Pr;2~3; (28a) 

Irvine and Karni’s [9] equation 

The results from the two equations above are plot- 
ted in Figs. 2(a) and (b). It can be seen that the present 
equation (26) matches with that of Skelland [3] quite 
closely and more so at larger values of n. However, 
the deviation from the equation of Irvine and Karni 
[9] is quite substantial. This is due to the fact that in 
Irvine and Karni [9] equation (28b) has St, cc Pr;“.4 
as against that of Skelland [3] equation (28a) which 
has St, cc Pr;2’3 and the present analysis equation 
(26) which has St, cc Pr; 3!4 for high Prandtl numbers. 
The proportionality obtained in Skelland [3] has often 

been used. However, the Irvine and Karni [9] pro- 
portionality function is unknown in the literature. In 
fact, even for Newtonian fluids, the equation pro- 
posed by Irvine and Karni [9] does not give expected 
results. In the present case, the Newtonian results 
match very well with those of Skelland [3] especially 
at lower Prandtl numbers. At higher Prandtl numbers, 
equation (26) presented herein gives more realistic 
results because it shows a dependence of St cc Pr; ‘j4 
which has been indicated by Diamant and Poreh [21] 
as the preferred dependence based on their own theor- 
etical analysis supported by other analyses and con- 
firmed by experimental data. 

The effects of pressure gradient based on equation 
(15) are shown in Figs. 3(a)(c) for varying Prandtl 
numbers. It can be seen that the pressure gradient 
effects diminish with increasing Prandtl number and 
higher pseudoplasticity. The curve in Fig. 3(a) for 
n = 1 matches that of Nakayama et al. [l] exactly but 
there is no other theoretical equation or experimental 
finding to confirm the trends at different values of n. 

In order to reinforce confidence that the present 
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1 o-2 
EXTERNAL FLOW : FLAT PLATE 

Re, = 10s 

n = 0.8 

10-4- 

- Present Analysis 

--- Skelland [3] 

--- Irvine and Karni [9] 

IO-5 ” .,' ,....I "."C 
1 10 102 103 

Pr, 

FIG. 2(a). Comparison from the predictions of the present 
analysis with those available in literature for external flow 
past a flat plate of power-law fluid with n = 0.8, /j’, = 0 and 

Re = IO’. 

analogy is correct for Newtonian as well as non-New- 
tonian power-law fluids, it is worthwhile comparing 
the results with other well-known and well-tested 
equations existing for turbulent flow of power-law 
fluids through smooth circular pipes. In order to do 
that, equation (26) needs to be adapted from the exter- 
nal flow case to the internal flow situation which is 
done as follows. 

Using equations (14b) and (14c), equation (26) is 
rewritten as 

,,$ - T,) 27,fpu:- = 

1 

1 + (rJpu,‘) “2P’ (29) 

Since this equation holds good at the edge of the Thus 

Pr, 
FIG. 2(b). Comparison from the predictions of the present 
analysis with those available in literature for external flow 
past a flat plate of power-law fluid with n = 0.4, 8, = 0 and 

Re = 105. 

boundary layer, it is assumed that replacing T, by Tb 
(temperature of the bulk of the fluid) and replacing u, 
by u, (maximum centerline velocity for pipe flow) 
retains its validity. From Skelland [20], it can be 
seen that u, is related to V (the average velocity) as 
follows : 

where 

P--P(2-~)112--8(2-~)1 
$ = [l-/?(l-n)][4-fi(4-3n)]’ (30b) 

0) 

t 
1.2 EXTERNAL FLOW : FLAT PLATE 

1 0.8 -n = 1.0 
______ n = 0.8 
-.- n = 0.6 
-- n = 0.4 

I I 

-2 -1 0 1 2 

FIG. 3(a). Effects of pressure gradient on the analogy factor for external flow past a flat plate of Newtonian 
and power-law fluids with Pr, = 1 and Re = 10’. 
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‘lb) 
0.5 EXTERNAL FLOW : FLAT PLATE 

Rex= 105 
zst, 

Pr,= 10 
crx 

__---- 
__---- 

0.4 

_--- 
_-_^--- _--_---- 

___________--------- __________---------- 

0.3 -n = 1.0 
-_____." I 0.8 

/_I /-l ---n = 0.6 
--n = 0.4 

I I I 
-2 -1 0 1 2 

B' 

FIG. 3(b). Effects of pressure gradient on the analogy factor for external flow past a flat plate of Newtonian 
and power-law fluids with A; = IO and & = IO*. 

(cl 
EXTERNAL FLOW : FLAT PLATE 

-- ------_--v-I_- -- 

Rex= 105 
a, 

Pr,= 100 
cf, 

.__-_-_-_^_--______-_---___-- 

t 

---____ ____-___-___-_-L___ 

i 0.06 II 1.0 
____-~ n = 0.6 
--- n 

= = 

0.6 
-- n q 0.4 

I I 

-2 -1 0 1 2 

FIG. 3(c). Effects of pressure gradient on the analogy factor for external flow past a Aat plate of Newtonian 
and power-law fluids with Pr, = lo* and Re = 105. 

29v4 1 1 

pC,V(T, - r,) 2z,$/pv2 = I +ljqrw/pV2) ‘12P. 

(31) 

Now using the following definition : 

f = 2T,jpYz (32a) 

and the Stanton number for pipe flow 

St = q,l&,V(T, - Tb) (32b) 

equation (31) can be rewritten in the simplified form 
using equations (32a), (32b) and (13b) as 

f/2 
St = l/$+ (f/2) “2[9.24(Pr;‘4 - l)] (33) 

where the value for f is used from equation (I 7a) and 
a plot is made for varying n (1.0, 0.8, 0.6, 0.4) and 
Reynolds number of lo5 as shown in Fig. 4. In order 
to check the propriety of equation (33), a comparison 
is made with the following existing theoretical 
expressions of Meaner and Friend [2], Sandall et al. 

[6] and Kawase and Ulbrecht [8] for two typical values 
of n = 0.8 and 0.4 as shown in Figs. 5 and 6. It should 
be noted that the equation proposed by Kawase and 
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INTERNAL FLOW : CIRCULAR PIPE 

Re = 105 

-n=( 

.__--_ n = 0.0 

--- " = 0.6 

St 

102 

Pr, 

103 

FIG. 4. Stanton number vs Prandtl number for internal flow 
of power-law fluids in smooth circular piue for B, = 0 and 

& = 10s, _ I 

10 

10 

St 

10 

10 

-2r 

\ 

-3 - 

-4 7 

-5’ 

1 

INTERNAL FLOW : CIRCULAR PIPE 

Re = 105 
\ 
\ n = 0.E 

--___. 
-.- 

Present Analysis 

Hetzner-Friend 121 

Sandal1 et al. [61 

Kawase-Ulbrecht [a] 

10 IO’ 

Pm 

103 

FIG. 5. Comparison from the predictions of the present 
analysis with those available in literature for pipe flow of 

power-law fluid with n = 0.8, /I, = 0 and Re = 105. 

Ulbrecht [8] has been appropriately modified to con- 
form with the definitions of various terms used in the 

present analysis. 

Metzner and Friend’s [2] equation 

f/2 ~-~ 
Sf = i.2+11.8(f/2)“~(Pr,-l)(Pr,)-“3’ (34a) 

Sandal1 et ~1,‘s [6] equation 

St = 

(f /2) Ii2 
1.241 In Pr, + 12.527Prz’3 +2.78 In [Re(f/2) “‘/90] ‘ln ’ 

(34b) 

Kawase and Ulbrecht’s [8] equation 

St = O.O75n”‘(f/2)“* Pr;2i3. (34c) 

It can be seen from Figs. 5 and 6 that equation 

St 

FIG. 

INTERNAL FLOW : CIRCULAR PIPE ‘“-ziir 

------ Hetzner-Friend [2] 

--- Sandal1 et al. [6] 

-- Kawase-Ulbrecht [EI] 

IO-51 
1 10 18 103 

Ph 

6. Comparison from the predictions of the present 
analysrs with those avatlable in literature for pipe flow of 

power-law fluid with n = 0.4, PI = 0 and Re = 10'. 

(33) proposed herein gives a very close match to the 
equations proposed by Metzner and Friend [2], San- 
da11 et al. [6] and Kawase and Ulbrecht [8]. Whereas 
Metzner and Friend [2] have used a constant value of 
1.2 for l/$ for all n, the present proposed equation 
uses equation (28b) to determine the said value for a 

different pseudoplasticity index. At n = 1, equation 
(28b) predicts l/$ = 1.22. It should be noted that 
for all n, the present equation gives almost identical 
results with that of Metzner and Friend [2] and San- 
da11 et al. [6] especially at lower Prandtl numbers 
and with Kawase and Ulbrecht [8] at higher Prandtl 
numbers. Whereas it is known that the model of 
Metzner and Friend [2] is fairly accurate up to Prandtl 
numbers of the order of 100, the Kawase and Ulbrecht 
[8] equation was developed for the high Prandtl num- 
ber region. Hence, it is not surprising that the Kawase 
and Ulbrecht [8] equation does not give good pre- 

dictions at lower Prandtl numbers. However, the pre- 
sent equation would provide accurate results over the 
entire range of Prandtl numbers from low (which is 
of relevance to Newtonian fluids) to high (which is of 
relevance to non-Newtonian power-law fluids which are 
known to have high consistencies). Some of the other 
equations available in the literature such as those pre- 
sented by Krantz and Wasan [5] and Wangskarn and 
Ghorashi [lo] are quite complex in form and require 
the knowledge of eddy and velocity distribution. 
Hence, they were not used in Figs. 5 and 6 for com- 
parison. 

A comparison of the theoretical predictions of 
equation (33) with experimental heat transfer data is 
shown in Fig. 7. The data were obtained by Raniere 
[Ill, Haines [12], Friend [13] and Farmer [14] for a 
very wide range of pseudoplasticity index n from 0.9 
to 0.4. This data has been used earlier by Sandal1 et 

al. [6] as well as Kawase and Ulbrecht [8] for com- 
paring their theoretical predictions. The present equa- 
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FIG. 7. Comparison from the predictions of the present 
analysis with experimental data available in literature for 
pipe flow of power-law fluids with n = 0.9-0.4. (Data of 
Raniere [ll], Haines [12], Friend [13] and Farmer [I41 as 

3 

quoted by Sandal1 et al. [6].) 4 

tion (33) can be seen to compare reasonably well with 
the experimental findings. 

CONCLUSIONS 

There are three equations of significance which have 
been presented in this work. Equation (15) is the 
proposed analogy for momentum/heat transfer dur- 
ing turbulent flow of a non-Newtonian power-law 
fluid past an external surface of arbitrary shape under 
the influence of a mild pressure gradient. Such an 
equation of a very general form is the first of its 
kind for inelastic non-Newtonian fluids. Hence, no 

comparison of the results could be done for this equa- 
tion. The special case of simplest flow past a flat plate 
without a pressure gradient was therefore chosen for 
comparison. 

Equation (26) is thus the second equation of sig- 
nificance and presents the momentum/heat transfer 
analogy for turbulent flow of a power-law fluid past 
a flat plate without pressure gradient. A comparison 
with the proposed equation of Skelland [3] shows a 
reasonably good agreement. The equation of Irvine 
and Karni [9], however, did not compare well as their 
proposed St, cc Pr; o.4 is contrary to expected trends. 

The third equation of significance is equation (33) 
which presents the momentum/heat transfer analogy 
for turbulent flow of a power-law fluid through 
smooth circular pipes. A comparison of the proposed 
equation with those available in the literature shows 
that it is more comprehensive as it predicts accurately 
in the low Prandtl number region where the equation 
of Kawase and Ulbrecht [8] fails and at the same time 
predicts very well in the high Prandtl number region 
where the equation of Metzner and Friend [2] fails. 

Moreover, equation (33) is very simple in its form and 

has no adjustable parameters, unlike some of the other 
equations in the literature which are complex and 

need the prior knowledge of the eddy and velocity 
distribution for evaluation. 
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ANALOGIE DE TRANSFERT QUANTITE DE MOUVEMENT/CHALEUR POUR DES 
FLUIDES A LOI-PUISSANCE EN ECOULEMENT TURBULENT DE COUCHE LIMITE 

AVEC GRADIENT DE PRESSION 

R&sum&I1 existe plusieurs essais pour developper des analogies de transfert pour la quantitt de mouve- 
ment, la chaleur et la masse dans les fluides a loi-puissance. Neanmoins aucun ne considere la presence 
d’un gradient de pression. Le present texte prtsente une analogie entre quantite de mouvement et chaleur 
sous l’influence dun gradient de pression modert pour les fluides non newtoniens a loi-puissance, a partir 

de la methodologie de Nakayama et al. (AIAA J. 22,841L844 (1984)) pour les fluides newtoniens. 

ANALOGIE VON IMPULS- UND WARME-TRANSPORT IN “POWER-LAW” FLUIDEN 
IN EINER TURBULENTEN GRENZSCHICHTSTRt)MUNG MIT GERINGEM 

DRUCKGRADIENTEN 

Zusammenfassung-Wie die Literatur zeigt, wurden schon zahlreiche Versuche unternommen eine Analogie 
fur den Impuls-, WHrme- und Stofftransport in “Power-law” Fluiden zu entwickeln. Bisher wurde dabei der 
Druckgradient vernachlassigt. In der vorliegenden Arbeit wird der Versuch unternommen, eine Analogie 
zwischen Impuls- und Wlrme-Transport zu entwickeln, die den EinfluB eines schwachen Druckgradienten 
fur nicht-Newton’ sche “Power-law” Fluide beinhaltet. Dazu wird das Liisungsverfahren nach Nakayama 

et al. (AIAA J. 22, 841-844 (1984)) fur Newton’sche Fluide verwendet. 

AHAJIOI-HJI MEXAY I-IEPEHOCOM HMI-IYJIbCA I4 TEI-IJIA AJIJI CTEI-IEHHbIX 
EAAKOCTEti ITPH TYF’EYJIEHTHOM TE’.IEHkIH B HOI-PAHH9HOM CJ-IOE C 

YMEPEHHbIMB I-PAAHEHTAMH WBJIEHWR 

AEIIOTUIJIPB narepaType HeorutoKpaTHo npennpunuhtanacb IIOII~ITKH pa3pa6oTw atianoraii Mewy 
nepewcohi ahinynbca, renna H MaccbI K cTenewbIh9 *~~AKOCTHM. OnHaKo npa ax +opMynHpoBKe He 

yWTb!BaJIOCb mnwnie rpanuewa AasneHen.~enbm HacTonuero scceneAosamin mum~c~ pa3pa60TKa 

ananormi Memy nepenocoM nhnrynbca u renna non BnHIlHBeM yhsepemioro rparulerira nasnemin a 
cnyqae HeHbloTOHOBCKHX CTeneHHbIX miAKoCTe%,npeAJloxceHOii HaKanMOii H Ap.(AIAA J. 22, 841-844 

(1984)) &ila HbH)TOHOBCKHX XbiAKOCT& 


